

Machine Learning for Talent Acquisition: Resume Screening, Candidate Ranking, and Job Matching

Himani Mishra, B. Suresh Kumar
MEERUT INSTITUTE OF TECHNOLOGY, CHAITANYA
BHARATHI INSTITUTE OF TECHNOLOGY (CBIT)

Machine Learning for Talent Acquisition: Resume Screening, Candidate Ranking, and Job Matching

¹Himani Mishra, Meerut Institute of Technology, Meerut, Himani.mishra@mitmeerut.ac.in

²B. Suresh Kumar, Chaitanya Bharathi Institute of Technology (CBIT), Gandipet, Hyderabad, India. bsureshkumar_eee@cbit.ac.in

Abstract

The increasing complexity of talent acquisition and the exponential growth of candidate data have necessitated the adoption of intelligent, data-driven recruitment strategies. Machine learning (ML) has emerged as a transformative approach for automating resume screening, evaluating candidate suitability, and optimizing job matching, thereby enhancing the efficiency, accuracy, and fairness of recruitment processes. This chapter presents a comprehensive overview of ML-based techniques for talent acquisition, highlighting methods for parsing unstructured resumes, ranking candidates based on predictive suitability, and matching applicants to organizational requirements through advanced recommendation systems. Multimodal approaches that integrate skills, experience, and behavioral data are discussed to emphasize holistic candidate assessment, while the integration of dynamic feedback loops ensures continuous adaptation to evolving labor markets. The chapter also addresses ethical considerations, algorithmic biases, and the challenges associated with real-time processing and scalability, providing a critical perspective on responsible and effective implementation of ML in human resource management. By bridging theoretical foundations with practical applications, this work contributes to the understanding of intelligent recruitment frameworks capable of supporting strategic workforce planning and sustainable organizational growth.

Keywords: Machine Learning, Talent Acquisition, Resume Screening, Candidate Ranking, Job Matching, Ethical AI

Introduction

The contemporary recruitment landscape was undergoing a profound transformation driven by the exponential growth of digital data and the increasing complexity of workforce requirements [1]. Traditional recruitment approaches, which primarily rely on manual evaluation of resumes and subjective judgment, are increasingly inadequate for handling the scale and heterogeneity of candidate information [2]. Modern organizations face the challenge of assessing thousands of applicants efficiently while ensuring that hiring decisions remain objective, fair, and strategically aligned. Machine learning (ML) has emerged as a pivotal solution to these challenges, providing data-driven methodologies capable of automating the processing, evaluation, and ranking of candidates [3]. By leveraging predictive algorithms, natural language processing, and embedding-based representations, ML enables organizations to extract relevant information from unstructured

resumes, evaluate candidate competencies, and match individuals to roles with greater accuracy than traditional methods [4]. This technological shift not only improves operational efficiency but also enhances the strategic alignment of talent acquisition with organizational goals, ensuring that recruitment practices are responsive to evolving labor market dynamics [5].

The foundation of ML-based talent acquisition lies in its ability to systematically parse and structure candidate information. Resumes, cover letters, and online professional profiles often contain unstructured text that was difficult to analyze at scale [6]. Advanced natural language processing techniques, including tokenization, named entity recognition, and word embeddings, allow algorithms to identify critical skills, qualifications, and experiences within these documents [7]. By converting textual data into structured features, ML models can efficiently filter, classify, and prioritize candidates based on their alignment with job requirements [8]. Deep learning models facilitate semantic understanding of resumes, capturing nuances such as transferable skills and cross-domain experience that traditional keyword-matching approaches frequently overlook [9]. The result was an automated screening process that maintains high levels of accuracy while significantly reducing manual effort, enabling recruiters to focus on strategic decision-making rather than repetitive tasks [10].

Beyond resume screening, candidate ranking represents a critical aspect of ML-driven recruitment. Ranking models assign scores to applicants based on predicted suitability, potential performance, and alignment with organizational objectives [11]. Supervised learning algorithms trained on historical hiring data can identify patterns associated with successful candidates, while hybrid and ensemble models further improve predictive accuracy [12]. Dynamic adaptation mechanisms, incorporating feedback loops from hiring outcomes and performance metrics, ensure that ranking systems evolve with changing job requirements and labor market trends [13]. This continuous learning approach mitigates the risk of outdated or biased predictions and enhances the robustness of recruitment decisions [14]. By providing objective, data-driven prioritization of applicants, candidate ranking models contribute to fairer and more transparent hiring processes while streamlining the workflow for human resource professionals [15].